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Executive summary 
The 2030 Agenda for Sustainable Development, adopted by all United Nations 

Member States in 2015, makes an emphasis on the Sustainable Development Goals 
(SDGs) and corresponding indicators that characterize complex interactions of human 
influence and environment state. Many indicators are based on geospatial information, 
and can be derived from satellite data integrated along with in-situ measurements and 
models, including weather forecasts, biophysical estimation and classification (machine 
learning) models. Therefore, there is a need to develop methods and tools that will allow 
derivation of SDG indicators as geoinformation products. 

Nowadays, methodologies for calculation SDG indicators are based on coarse 
spatial resolution (300 m) satellite data and global products. However, our previous 
studies for Ukraine showed that global coarse resolution products are not very accurate 
at local (country) scale, especially for agriculture potential estimation, due to producing 
mixtures in pixel values from combining different land cover types in a single pixel. 

The present proposal aims at developing automated workflows for calculating SDG 
Indicators grouped by use of land cover maps as the baseline. The main goal is to 
adopt, improve and apply already proposed methodologies, which were used for 
generating global products with coarse spatial resolution data, to higher spatial 
resolution data (up to 10 m), which will be better suited for regional products and 
applications. Specifically, the proposal will focus on the following indicators: 2.4.1 
“Proportion of agricultural area under productive and sustainable agriculture”1, 11.3.1 
“Ratio of land consumption rate to population growth rate”2, 15.1.1 “Forest area as 
proportion of total land area”3, 15.3.1 “Proportion of land that is degraded over total land 
area”4. 

Within the project, we will elaborate informational technology for SDGs indicators 
15.3.1, 15.1.1, 2.4.1 and 11.3.1 calculations and will implement it in the AWS cloud 
environment. It will be based on Open Data Cube technology and will include deep 
learning algorithms for land cover classification, biophysical modeling, weather 
modeling, and satellite data analysis. The technology will be scalable and usable for any 
country. As a case study all these indicators will be calculated for 3 countries (which are 
represented by collaborators): Ukraine, Argentina and India with area ranging 
respectively from ~604,000 to 3297 thousands km2. 

The main innovation of the project is concerned with the improvements of existing 
workflows for SDG indicators calculation by the use of high spatial resolution data and 
filling gaps between existing global products and national ones. 

In particular, we propose to use a previously developed by us neural network 
approach for high resolution land cover and crop type mapping at country level. The 
proposed approach outperforms global products in terms of accuracy and spatial 
resolution. To assess agricultural area under productive and sustainable agriculture, we 
propose to combine this approach with biophysical model WOFOST as an alternative 
source of information which allows us to increase the temporal resolution of crop state 
indicators. 
                                                
1 

 http://www.fao.org/sustainable-development-goals/indicators/241/en/ 
2 

 https://unstats.un.org/sdgs/metadata/files/Metadata-11-03-01.pdf 
3 

 http://www.fao.org/sustainable-development-goals/indicators/1511/en/ 
4 

 https://knowledge.unccd.int/topics/sustainable-development-goals-sdgs/sdg-indicator-1531 

http://www.fao.org/sustainable-development-goals/indicators/241/en/
http://www.fao.org/sustainable-development-goals/indicators/1511/en/
https://knowledge.unccd.int/topics/sustainable-development-goals-sdgs/sdg-indicator-1531
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This proposal is in line with, and will contribute to, the following activities of the 
GEO Work Plan 2017-20195: GEO WP 1 “GEOSS Architecture and Evolution” 
(information technologies in Earth Observation domain) and WP 5 “Demonstrations 
Projects” (demo of use of EO data for SDG Indicators calculation). In particular, 
according to WP5 the project will demonstrate use of GEOSS infrastructure for 
providing data to end-users (like national authorities) via common protocols. 

Cloud computing technologies are essential for solving this task at country level 
and in a scalable way — in case of Ukraine a 10 m LCLU map (132874 x 88823) 
consists of about 6*109 pixels. Creation of such a product for Ukraine requires 
processing of 7 Tb of Sentinel-1 and Sentinel-2 data annually. Cloud based technology 
is even more crucial for the Argentina (15 Tb) and India (18 Tb) use-cases due to 
significantly bigger areas. For these estimations Sentinel-2 data are considered with 
cloudiness < 20% only. The core technology, which will be tested for 3 pilot countries, 
will be scalable and applicable for any other regions all over the Globe. 

Proper data preprocessing also requires significant computational resources. For 
SAR data processing workflow includes orbit correction, coregistration, border noise 
removal, thermal noise removal, radiometric calibration, orthorectification, filtering etc. 
Optical data require atmospheric correction with cloud and shadows masking. 
Computational time depends on instance type but in general SAR and optical scene 
could be processed in 10 and 30 minutes respectively. These actions could be 
performed in parallel on multiple computational instances. 

For efficient satellite data collection, processing and indexing for targeted countries 
an Open Data Cube6 is planned to be deployed over the cloud infrastructure. Data Cube 
will be an useful instrument for users in Ukraine, Argentina and India that will give 
access to processed satellite products for environmental monitoring purposes. 

Biophysical WOFOST model (its Python PCSE implementation) itself execution 
does not require a lot of computational resources. Nevertheless, one of the required 
inputs into this model is daily weather data that could be obtained from weather models 
like WRF7. As it is shown in 8 the typical instance for WRF model benchmarking is 
c4.8xlarge. The benchmark case is 2.5km resolution grid covering the Continental U.S. 

(7,663,941.7 km
2
). On c4.8xlarge model may be run in 9 hours for a single day. 

Project deliverables will be publicly available and will be several-fold:  
● Deep learning models  based on open-source packages and libraries  
● High resolution LU/LC maps for Ukraine, Argentina and India (2000 and 2015 as 

reference years and ongoing) 
● High resolution maps for land productivity for Ukraine, Argentina and India 
● SDGs indicators 2.4.1, 15.3.1, 15.1.1, 11.3.1 for Ukraine, Argentina and India 
● Open source Python code for SDG indicators calculation 

All the code of workflows will be written in Python. These solutions will be used in 
Ukraine by authorities responsible for implementation of the national reporting (Ministry 
of Ecology of Ukraine) and by Kyiv city Administration for smart city solutions. Partners 
from Argentina will be also involved into results use and dissemination within HARVEST 

                                                
5 

 https://www.earthobservations.org/activity.php?id=120 
6 

 https://www.opendatacube.org 
7 

 https://www.mmm.ucar.edu/weather-research-and-forecasting-model 
8 

 https://github.com/aws-samples/aws-hpc-workshops/blob/master/README-WRF.rst#tutorials 
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program. Project results will be used within GEOGLAM initiative. Our partners are 
interested to be involved as end-users of the solutions developed within this project. 

 

Project plan 
 

Methodology for SDGs indicators assessment 
 
According to methodological note9 3 Tiers of SDG Indicators are defined: 

● Tier 1: Indicator is conceptually clear, has an internationally established 
methodology and standards are available, and data are regularly produced by 
countries for at least 50 percent of countries and of the population in every region 
where the indicator is relevant. 

● Tier 2: Indicator is conceptually clear, has an internationally established 
methodology and standards are available, but data are not regularly produced by 
countries. 

● Tier 3: No internationally established methodology or standards are yet available 
for the indicator, but methodology/standards are being (or will be) developed or 
tested. 

 
Within this project we will implement workflows for calculating 4 SDG indicators that 
highly dependent on satellite data and land cover mapping technologies: 

● 2.4.1 “Proportion of agricultural area under productive and sustainable 
agriculture” (Tier 3) 

● 11.3.1 “Ratio of land consumption rate to population growth rate” 10 (Tier 2) 
● 15.1.1 “Forest area as proportion of total land area” (Tier 1) 
● 15.3.1 “Proportion of land that is degraded over total land area” (Tier 2) 

During the project we are going to develop and implement the technology to update 
them to Tier 1. 
The next section describes the state-of-the-art methodology for the indicators 
identification. 
 

STATE OF THE ART for SDG indicators calculation 
 
Methodology for estimation indicator 15.3.1 “Proportion of land that is degraded 
over total land area” 
Level: 
Tier 3 -> Tier 2 (Initial Proposed Tier is 3, Updated Tier Classification is 2 after 6th 
Inter-agency and Expert Group on SDG Indicators, Finalized methodology development 
with metadata is in progress) 
Principle: 

                                                
9 

 
https://unstats.un.org/sdgs/files/Tier%20Classification%20of%20SDG%20Indicators_11%20May%20201
8_web.pdf 
10 

 For cities with at least 100 thousands of inhabitants as it is organized in Urban Atlas product over 
EU -  https://land.copernicus.eu/local/urban-atlas 
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The SDG indicator 15.3.1 is a proportion of degraded land to the total area of the 
country and based on the analysis of available data or developed at the national level 
products (namely, Trends in Land Cover, Land Productivity and Carbon Stocks). This 
indicator is based on statistical principal “One Out, All Out” on evaluation of changes in 
the sub-indicators11. This principle means that we have three types of changes in the 
sub-indicators, which are depicted as positive or improving, negative or declining and 
sustainable or unchanging. This methodology unfortunately can’t be used in full mode 
because it is very hard to obtain Carbon Stocks maps for every year at national level. 
The newest Carbon Stocks map is dated by 2016 year and already outdated as well as 
the newest open access land cover map dated by 2015. 
If one of the sub-indicators has negative changes for some area, then this area has 
negative productivity. According to existent methodology as negative changes 
considered following transitions: decrease of carbon stock level over the period of time, 
decline in land productivity or negative land cover changes (i.e. forest -> grassland, 
forest -> cropland, any green area -> urban) etc. 
Data: 

Dataset type Source Specs Comments 

Land Cover ESA CCI land 
cover dataset 

300 m 
resolution, 
1992-2015, 
22 classes 

Rescaled from 22 classes to 6 
main (Forest, Grassland, Cropland, 
Artificial, Wetland and Water, Bare 
land). Basic period 2000-2015 
(UNCCD) 

Land 
Productivity 
Dynamics 

JRC 
Productivity 
Dynamics 
Dataset 

1 km 
resolution, 5 
classes 

Based on time series of SPOT-
Vegetation data collected during 
1999-2013. 5 qualitative classes of 
land productivity trends are 
available (Declining productivity, 
Early signs of decline, Stable, but 
stressed, Stable, not stressed, 
Increasing productivity) 

Soil Organic 
Carbon stocks 

ISRIC’s  
SoilGrids250m 
12 

250m Topsoil SOC values (0-30 cm) 

 
Actually, the approach implemented by JRC takes into account total green vegetation 
and non-suitable for estimation of cropland productivity (the most productive regions 
often partially covered by forests). 
Furthermore, coarse resolution of this global product produces mixtures in pixel values 
from combining different land cover types in single pixel. 
 

                                                
11 

 https://unstats.un.org/sdgs/metadata/files/Metadata-15-03-01.pdf 
12 

 https://www.isric.org/ 
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Methodology for estimation indicator 15.1.1 “Forest area as proportion of total 
land area” 
Level - Tier 1 
The SDG indicator “15.1.1” is a proportion of forest areas to total land area. According 
to existing methodology FAO has been collecting and analyzing data on forest area 
since 194613. It was done at intervals of 5-10 years as part of the Global Forest 
Resources Assessment (FRA)14. FRA 2015 contains information for 234 countries and 
territories on more than 100 variables related to the extent of forests, their conditions, 
uses and values for five points in time: 1990, 2000, 2005, 2010 and 2015. Assessment 
of forest area is carried out at infrequent intervals in many countries. Access to remote 
sensing imagery has improved in recent years. 
Another globally available product is Global Forest Change produced by University of 
Maryland with use of time-series analysis of Landsat images in characterizing global 
forest extent and change from 2000 through 2017 at 30 m resolution15. 
So, the main required information for indicators is time series of land cover maps over 
the territory of interest. 
 
Methodology for estimation indicator 11.3.1 “Ratio of land consumption rate to 
population growth rate” 
Level - Tier 2 
The SDG indicator 11.3.1 can be calculated using detailed land cover maps built on 
moderate and high resolution images for two years at least to estimate ratio of land 
consumption rate and requires open access statistics about city population. Population 
statistics over the city provided by statistical authorities is used for population growth 
rate assessment. In case when national data are not available, it is possible also to use 
open data such as JRC Global Human Settlement layer 
(https://ghsl.jrc.ec.europa.eu/datasets.php). 
This indicator can be used in every country in the world with use of global coarse 
resolution LC. Information can be obtained at two levels. First level is city level indicator, 
which measure sustainability in terms of city and population growing. The second level 
is country based, which aggregate city’s based indicators within the country and indicate 
urban area and population growth rate for this country. 
 
Methodology for estimation indicator 2.4.1 “Proportion of agricultural area under 
productive and sustainable agriculture” 
Level -  Tier 3    
 
This workflow include the definition of land productivity in particular over 
cropland. The methodology implemented by JRC takes into account total green 
vegetation and non-suitable for estimation of cropland productivity (the most productive 
regions often covered with forests). Furthermore, coarse resolution of this global 
product produces mixtures in pixel values from combining different land cover types in 
single pixel. 

                                                
13 

 https://unstats.un.org/sdgs/metadata/files/Metadata-15-01-01.pdf 
14 

 http://www.fao.org/forest-resources-assessment/en/ 
15 

 https://earthenginepartners.appspot.com/science-2013-global-forest 

https://ghsl.jrc.ec.europa.eu/datasets.php
https://unstats.un.org/sdgs/metadata/files/Metadata-15-01-01.pdf
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The SDG indicator 2.4.1 could be calculated using the same methodology as proposed 
for indicator 15.3.1 calculation. This indicator is a proportion of agricultural area that has 
a positive productivity trend value to the total agricultural area by the rule “One Out, All 
Out”. For this indicator, the same sub-indicators as for indicator 15.3.1 are used, but the 
area of interest is not the whole area of the country, but rather the agricultural land 
(cropland) subsetted with use of LC map. For this indicator, the use of high spatial 
resolution satellite images is particularly important, since mixed pixels greatly affect the 
value of sub-indicator changes. 
 

Data 
Dealing with land cover mapping and SDG calculation workflows at the country level 
required long term series of satellite data.  
Right now, methodology for all indicators identification is based on low resolution data 
(mostly 300 m or lower) that has a mixture of different land use classes over one pixel. 
Our main innovation is use of time series of high resolution data (10 m) from Sentinel-1 
and Sentinel-2, which will be directly acquired from Amazon S3.  
In particular, Sentinel-1 provides approximately 3 Tb of images for the territory of 
Ukraine, 5 Tb of images for the territory of Argentina and 6 Tb for the territory of India 
for one vegetation year. And Sentinel-2 provides approximately 4 Tb of images for the 
territory of Ukraine, 10 Tb of images for the territory of Argentina and 12 Tb of images 
for the territory of India with cloudiness less than 20% for one vegetation year. 

● Storing and transferring big amounts of satellite data couldn’t be solved in 
efficient way without cloud storage, in particular AWS S3. 

 

Our innovations in SDGs indicator assessment workflow 
We propose a universal workflow (Fig. 1) for calculating of all the above mentioned 
indicators based on satellite data for precise LC/LU classification and using modeling 
data (weather forecast and biophysical crop growth models) for crop state assessment.  
We propose to use our own neural network approach for high resolution land cover 
mapping at country level (Fig. 2). Proposed approach16 outperforms global products in 
terms of accuracy and spatial resolution. For instance, for Kyiv region of Ukraine the 
overall accuracy is improved by more than 10% compared to ESA’s Climate Change 
Initiative Land Cover dataset; the kappa coefficient for ESA’s Climate Change Initiative 
Land Cover dataset is 0.75, while the kappa coefficient for our map is 0.9. Concerning 
ESA CCI land cover we have identified significant overestimation of cropland areas (Fig 
3.) 

                                                
16 

 Shelestov, A., Lavreniuk, M., Kussul, N., Novikov, A., & Skakun, S. (2017). Exploring Google 
earth engine platform for Big Data Processing: Classification of multi-temporal satellite imagery for crop 
mapping. frontiers in Earth Science, 5, 17. 
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Figure 1. Workflow for calculating Sustainable Development Goals indicators 11.3.1, 
15.1.1, 15.3.1 and 2.4.1 within cloud Data Cube technology 
 

 
Figure 2. Land cover for Ukraine, 2018, 10 m 
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Figure 3. Comparison of ESA CCI land cover (top) with SRI land cover (bottom) over 

Kyiv region  
 

We will improve land productivity estimation workflow in following ways: (i) high 
resolution satellite data (sparse time resolution could be a problem for regions with big 
amount of cloudy days); (ii) Leaf Area Index from biophysical WOFOST model launched 
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over the uniform grid that incorporates modeled weather data (WRF model, weather 
data generators etc.). 
 
Workflow summary (covered in details in cloud computing technology section) – Fig. 
1:  

● Satellite data will be taken from Amazon S3 storage and preprocessed with use 
of Open Data Cube software deployed at Amazon EC2; 

● Preprocessed imagery will be used by classification model for producing land 
cover maps at Amazon EC2; 

● Weather model will be deployed at Amazon EC2 and treated as source of 
information for gridded version of crop growth model; 

● Time series of vegetation indices will be extracted from high resolution satellite 
imagery and cumulative trend analysis will be performed for land productivity 
assessment (crop specific) at Amazon EC2;  

● Fusion of satellite based crop vegetation indices estimates and crop growth 
modeling allows to estimate crop specific land productivity for main crop types; 

● Results are published on GeoServer17 
Indicators 11.3.1 and 15.1.1 relay only on LC/LU, while 15.3.1 and 2.4.1 additionally on 
land productivity data and crop state assessment. 
 
 
 

Our methodology of land cover mapping with machine learning 
approach 

Proposed methodology is based on a deep learning approach for land cover mapping, 
in particular an ensemble of neural networks18. A committee of neural networks is used 
for providing crop classification and land cover maps for the territory of interest (starting 
from whole Ukraine use-case) using high resolution Sentinel-1 and Sentinel-2 imagery 
and appropriate in-situ data. Time series of satellite data for vegetation period allow 
achieve better accuracy of land cover classification and could help us more precise 
discriminate crops and other land cover types. But utilizing time series of high resolution 
satellite imagery and it’s preprocessing is time consuming task. Another issue is training 
of deep learning models on time series of satellite data. 
To address aforementioned big geospatial data challenges two main powerful cloud 
platforms are available at the moment: Amazon and Google. We have previous 
experience with utilizing powerful cloud platforms for land cover classification such as 
Amazon Web Service (AWS)19 and freely available Google Earth Engine (GEE)20. 
                                                
17 

 http://geoserver.org/ 
18 

 N. Kussul, M. Lavreniuk, S. Skakun, and A. Shelestov, “Deep Learning Classification of Land 
Cover and Crop Types Using Remote Sensing Data,” IEEE Geoscience and Remote Sensing Letters, vol. 
14, no. 5, pp. 778-782, 2017. 
19 

 Shelestov, A., Lavreniuk, M., Kolotii, A., Vasiliev, V., Shumilo, L., & Kussul, N. Cloud approach to 
automated crop classification using Sentinel-1 imagery. Proc. of the 2017 conference on Big Data from 
Space (BiDS’17). 122-125. 
20 

 Shelestov, A., Lavreniuk, M., Kussul, N., Novikov, A., & Skakun, S. (2017). Exploring Google 
earth engine platform for Big Data Processing: Classification of multi-temporal satellite imagery for crop 
mapping. frontiers in Earth Science, 5, 17. 
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Cloud platforms allow us to overcome challenges of satellite data download and 
processing. GEE platform that provides built-in functions and intrinsically-parallel 
computational access. At the same time, Amazon cloud platform provides an 
opportunity for exploiting any software for image processing and libraries with advanced 
classifiers. As well as Amazon does not provide ready to use functionality of satellite 
data processing and classification, it’s utilization requires much more efforts. We have 
developed an automated workflow for cloud-based crop classification using AWS based 
on Sentinel-1 and Sentinel-2 imagery. This methodology has been applied for providing 
10 m resolution crop classification maps for the Ukraine territory in 2016 - 2018. This 
improvement provide much better accuracy in indicators estimation. Collaborators will 
be enable to collect and share in-situ data for Argentina and India that are essential for 
crop classification mapping for these countries. Also, collaborators from the experienced 
organization that are working on study area (Argentina and India) will assist with the 
providing interpretation and final product validation. 
 

Our methodology for crop productivity assessment 
 
Satellite based approach 
Satellite based approach for estimation of indicator 2.4.1 that we propose is based on 
assessment of Vegetation indexes change trends from year to year and corresponding 
slope definition (ascending, descending or stable). Currently we use NDVI index, but 
due to value saturation during vegetation period, we are going to use more complex 
indices such as EVI and LAI.  To deal with cloudiness of optical data fusion of Landsat-8 
(30 m) and Sentinel-2 (10 m) data is necessary with coregistration of products from 
different satellites and values scaling. This solution is intended to replace global land 
productivity products within workflow of 15.3.1 indicator calculation.  
 
WOFOST based approach 
The second approach that we propose for indicator 2.4.1 estimation is based on more 
complicated calculations. It based on LAI extracted from crop growth model and satellite 
data. The idea is compare forecasted LAI under certain conditions without land 
degradation influence (ideal case) and close to real LAI obtained from satellite data in 
the same conditions but with influence of land degradation. 
Ideal case LAI is estimated with use of WOFOST model (gridded CGMS system) that 
uses as input agrometeorology data, crop type parameters, soil type information and 
standard agromanagement rules. As model output for specific location over the regular 
country-wide grid it’s possible to obtain LAI for several crop types that correspond to 
meteorology and soil type.  
Intersection of crop type map with WOFOST model output allows us to obtain crop 
specific LAI time series with high temporal resolution  (daily) and 10 meters spatial 
resolution (all fields of the same crop within one WOFOST model grid cell have the 
same LAI value). Grid cell size depends on weather and soil data resolution. 
To estimate satellite based LAI we plan to use harmonized Sentinel-2 and Landsat-8 
data. This approach provides the possibility to built harmonized LAI time series with 
higher temporal resolution and up-to 10 meters spatial resolution. Satellite LAI product 
shows not only crop condition related to meteorology, crop type and soil type but also 
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takes into account (in indirect way) land degradation as factor of land productivity 
decreasing and proper land management as factor for land productivity increasing.  
Dealing with time series of modeled LAI and satellite based LAI estimates we’ll build two 
land productivity maps. For both maps LAI time series will be processed in similar way - 
for each pixel land productivity index equal to area under LAI development curve during 
vegetation period. For identification of land state (degradation or sustainable) it’s 
enough to subtract two productivity index maps and cluster result into three groups by 
pixel value. Land should be considered as degraded if subtraction result is less than 
zero, as sustainable if result is equal to zero and as productive if result is higher than 
zero. 
This method’ benefits include: 

● possibility for land degradation estimation on one year time series (in case of 
enough amount of cloud-free images) 

● We don’t pretend on calculation of land productivity that has quite a fuzzy 
interpretation, but instead operate qualitative land productivity index that express 
land productivity 

● In proposed methodology there is no need to calculate vegetation indices trend 
that is the main problem of state-of-the art approach. This problem expressed by 
necessity of vegetation index curve normalization with respect to crop type for 
correct trend estimation. 

● The outcome of this approach could also be used within Water-Food-Energy 
NEXUS for Essential Variables (EV’s) estimation. These EV’s provide possibility 
for environmental monitoring and analysis.   

 

Cloud computing justification 
 
Amazon Cloud Services provide unique opportunity to process Big amounts of data in 
quick way (in our case total annual satellite data coverage for these countries is up to 
15 Tb of data from Sentinel missions only). In some cases, actually no time is spent on 
data download.  
Classification approach that is the main component of SDG indicators workflows is 
based on time series of satellite data thus it requires a lot of storage and computational 
resources for satellite data processing.  
As a part for more complicated workflow for SDG indicator 2.4.1 calculation crop growth 
modelling over the regular grid will be used. Crop growth models require daily weather 
data with high enough spatial resolution (this is even more crucial for precipitation data).   
Weather modelling with use of WRF model will be implemented over Amazon EC2 
instance. 

 
Data Access 
Registry of Open Data on AWS include numerous datasets. Among them we plan to 
use Sentinel-1 (ASF S3 bucket), Sentinel-2 (requested pay bucked - 

s3://sentinel-inventory/sentinel-s2-l1c for L1C products and 

s3://sentinel-s2-l2a for L2A level products) and Landsat-8 (s3://landsat-

pds/c1/L8/). These datasets are stored by Amazon at scalable storage S3 and could 

be obtained via high-speed network connections. 
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In particular, SAR data (Sentinel-1) on Amazon computing facilities are available from 
Alaska Satellite Facility https://www.asf.alaska.edu/. These resources provide data 
portal [https://vertex.daac.asf.alaska.edu/] for data search and download with use of 
web-interface or API.    
      
Satellite data preprocessing 
For land cover mapping that is a baseline product for SDG indicators estimation time 
series of processed satellite data are required. Most of satellite data preprocessing 
stages require a lot of computational resources. 
For SAR data processing workflow includes numerous stages (orbit correction, border 
noise removal, thermal noise removal, radiometric calibration, orthorectification, filtering 
etc.). Computational time depends on instance type but in general 1 scene could be 
processed in 10 minutes. 
Optical data require atmospheric correction with cloud and shadows masking. In 
general, about 30 minutes is required for processing of one Sentinel-2 scene with use of 
sen2cor software.  
To extract maps for big territories we need coregistation for time series of satellite data 
(between images from different sensors and between images in one time serie). We will 
do this operation with GDAL function gdal_merge.py21, which is very time consuming.  
The problems with processing of Big amount of satellite data could be solved in efficient 
way with scalable computational infrastructure (like Amazon EC2). This could be 
ensured by parallel data processing on numerous computational instances (paradigm of 
“Data parallelism”). 

 
Weather data modelling 
As the source of data for enhanced workflow for SDG 2.4.1 WRF model22 is planned to 
be used. WRF is a numerical weather prediction system designed for both atmospheric 
research and operational forecasting applications. WRF model doesn’t require in-situ 
data for launch, however publicly available in-situ weather data (for instance from 
Global Surface Summary of the Day from NOAA23) will be used for model output 
validation. 
Due to complicated modeling process WRF model requires a lot of computational 
resources and cluster for running WRF model.  As it is shown in 24 the typical instance 
for WRF model benchmarking is c4.8xlarge (with 36 vCPUs and 60 Gb RAM). The 
benchmark case is 2.5km resolution grid covering the Continental U.S. (7,663,941.7 

km
2
). On c4.8xlarge model may be run in 9 hours from cold start for single day.  

In case of Ukraine we earlier had an experience in WRF model launch over GRID 
infrastructure. Forecasts were constructed on a grid of size 200x200 with the mesh size 
equal to 10x10 km. Detailed background is available via link: 

● Kravchenko, A. N., Kussul, N. N., Lupian, E. A., Savorsky, V. P., Hluchy, L., & 
Shelestov, A. Y. (2008). Water resource quality monitoring using heterogeneous 

                                                
21 

 https://gdal.org/ 
22 

 https://www.mmm.ucar.edu/weather-research-and-forecasting-model 
23

   https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00516 
24 

 https://github.com/aws-samples/aws-hpc-workshops/blob/master/README-WRF.rst#tutorials 

https://www.asf.alaska.edu/
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data and high-performance computations. Cybernetics and Systems Analysis, 
44(4), 616-624. 

 
 
Data cube operations 
As a part of cloud-based solution we plan to implement data processing with Open Data 
Cube (ODC). The Committee on Earth Observation Satellites (CEOS) founded ODC 
initiative to provide a data architecture solution that has value to global users and to 
increase the impact of EO satellite data.  
We plan to use ODC for range of applications including land, water, cloud, and time 
series analysis. Applications for mosaic creation, Spectral Index calculation, Water 
Mapping, Land Classification and Land Change are available after system deployment 
and we plan to use them as input for land cover mapping. Earlier we deployed ODC on 
local computational resources. 
 

 
Figure 3. ODC sample deployment 
 

Deliverables 
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Main Project goal is development of scalable cloud infrastructure for SDG indicators 
calculation that will operate over pilot countries and could be scaled to any other country 
over the world.  
Project deliverables will be publicly available and will be several-fold:  

1. Deep learning models  based on open-source packages and libraries. We will 
provide pre-trained deep learning models and open source Python code for 
LU/LC mapping with comprehensive manual for users.  

2. High resolution LU/LC maps for Ukraine, Argentina and India. This maps will be 
built on Sentinel-1 and Sentinel-2 data (Landsat-8 data for reference land covers 
for 2000 and 2015) using deep learning models and code from deliverable #1 
over Amazon cloud infrastructure. 

3. High resolution maps for land productivity for Ukraine, Argentina and India. 
These maps will be created using developed part of infrastructure for SDG 
indicators on Amazon and will be provided to local governments and all users. 

4. SDGs indicators 2.4.1, 15.3.1, 15.1.1, 11.3.1 workflows implementation for 
Ukraine, Argentina and India. This indicators will be published at project 
dashboard to which other organizations and users will have an access as data 
providers for additional information and feedbacks. 

5. Open source Python code for SDG indicators calculation. This code will include 
developed solutions for SDG indicators monitoring that can be used for any 
country. Developed code will be provided will all necessary technical details and 
manuals. 

 

Implementation Plan 

 Year 1 Year 2 Year 3 

Task Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 

Deployment of Open Data 
Cube solution  

            

Development  of deep learning 
technology for land cover 
mapping (Ukrainian use-case) 

            

Implementation of workflow for 
SDG indicator 15.1.1 
(Ukrainian use-case) 

            

Implementation of workflow for 
SDG indicator 15.3.1 
(Ukrainian use-case) 

            

Implementation of workflow for 
SDG indicator 11.3.1 
(Ukrainian use-case) 
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Scalable deep learning land 
cover mapping approach 
implementation (Argentina and 
India use-cases) 

            

Implementation of workflow for 
SDG indicator 2.4.1 (simplified 
version), 11.3.1, 15.1.1 and 
15.3.1 for 3 use-cases 

            

Deployment of WRF model 
over Amazon Cloud 
Infrastructure 

            

Implementation of complex 
workflow for SDG indicator 
2.4.1 calculation   

            

 

Project team 
        
 

Role Focal Point Institution Tasks description 

PI Nataliia Kussul Space Research 
Institute NASU-SSAU, 
Ukraine 

Coordinator, scientific leader, cloud 
technology development 

CO-PI Esteban Julian 
Copati25 26 

Buenos Aires Grains 
Exchange, Argentina  

In-situ data collection in Argentina, 
local expert from Argentina, results 
validation for Argentina 

Collaborator Nilanchal 
Patel27 28 

Birla Institute of 
Technology, Mesra, 
India 
 

In-situ data collection in India, local 
expert from India, results validation 
for India 

Collaborator Michael 
Ryabokon29 

NGO Association 
Noosphere (Noosphere 
Engineering school) 

In-situ data collection in Ukraine, 
results validation for Ukraine 

Collaborator Sergii Skakun30 
31 32 

University of Maryland, 
College Park, MD, USA 

Scientific advisor in data 
processing and harmonization, 

                                                
25 

 https://ar.linkedin.com/in/esteban-j-copati-4271882a 
26 

 https://nasaharvest.org/partner/esteban-j-copati 
27 

 https://www.researchgate.net/profile/Nilanchal_Patel 
28 

 https://in.linkedin.com/in/nilanchal-patel-7401b975 
29 

 https://www.linkedin.com/in/mryabokon/ 
30 

 http://lcluc.umd.edu/people/sergii-skakun 
31 

 https://www.researchgate.net/profile/Sergii_Skakun 

https://ar.linkedin.com/in/esteban-j-copati-4271882a
https://nasaharvest.org/partner/esteban-j-copati
https://www.researchgate.net/profile/Nilanchal_Patel
https://in.linkedin.com/in/nilanchal-patel-7401b975
http://lcluc.umd.edu/people/sergii-skakun
https://www.researchgate.net/profile/Sergii_Skakun
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 crop yield forecasting 

 
The main power of the project is connection of high-performance cloud computations with 
modern land cover and crop mapping techniques, SRI has strong expertise in both domains. 
Within the project SRI will perform all main tasks of LAI and crop grows modeling, satellite data 

processing, classification methods development and technologies deployment (Open Data 
Cube, CGMS and WRF) with their validation for the territory of Ukraine. After technology will be 

successfully tested for the territory of Ukraine it will be extended for the territory of India and 
Argentina. 
 
CO-PI from Argentina (Esteban J. Copati)  is a member of GeoGlam (Oct-2015), 
NASAHarvest (Sept-2017) and AmeriGeoss (Sept-2018). He has a remarkable experience in 
collection of georeferenced in-situ data that is crucial for successful crop type / land cover 
mapping and validation. Additionally he has wide experience in crop conditions assessment  
and collaboration in multinational projects. He'll be responsible for collection of in-situ data and 
product validation for the territory of Argentina as well as for communication with local end users 
and authorities. 
 
Our local  collaborator  from Ukraine (NGO Noosphere)  will participate in in-situ data 
collection and preparation for the territory of Ukraine for land cover and crop mapping. They 
also will be involved into product validation based on data from publicly available sources 
(statistics, online surveys etc.), project results dissemination and popularization over the 
internet. Noosphere will prepare projects results usage manuals for end-users. Noopshere will 
organize webinars for end-users (in particular  India and Argentina authorities) to make them 
capable for usage of developed technologies. In particular, training on satellite products 
interpretation for agriculture domain, basic cloud technologies exploitation, SDG indicators 
interpretation for decision making will be organized. 
 
Our collaborator from USA (Sergii Skakun) is  a member of NASAHarvest program. He has a 
remarkable expertise of satellite data usage and will develop a procedure for Sentinel-2 and 
Landsat-8 data coregistration and values harmonization for vegetation development 
assessment from NDVI time series with use of both satellites jointly. 

 
Our collaborator from India (Nilanchal Patel) is a Prof. of Birla Institute of Technology. 
Ukrainian part of project team will provide to him necessary knowledge so he’ll be capable to 
provide these knowledge to his students. This is really important for capacity building in India. 
Also he will be responsible for collection of in-situ data  and product validation for the territory of 
India as well as for communication with local end users and authorities. 
 

                                                                                                                                                       
32 

 https://nasaharvest.org/partner/sergii-skakun 

https://nasaharvest.org/partner/sergii-skakun

