GEO WEEK & MINISTERIAL SUMMIT 2023

Showcase

#TheEarthTalks

science & innovation

Department: Science and Innovation REPUBLIC OF SOUTH AFRICA

#TheEarthTalks

GEO WEEK & Ministerial Summit 2023

Barb Ryan WGIC Moderator Dsamu Ochia JAXA Speaker Jean-Francois Gauthier GHGSat Speaker

07/11/2023 11:00am to 11:30am

other air quality gases

GEO

2023

SUMMIT

WEEK

MINISTERIAL

Strength in numbers: The benefits of working with

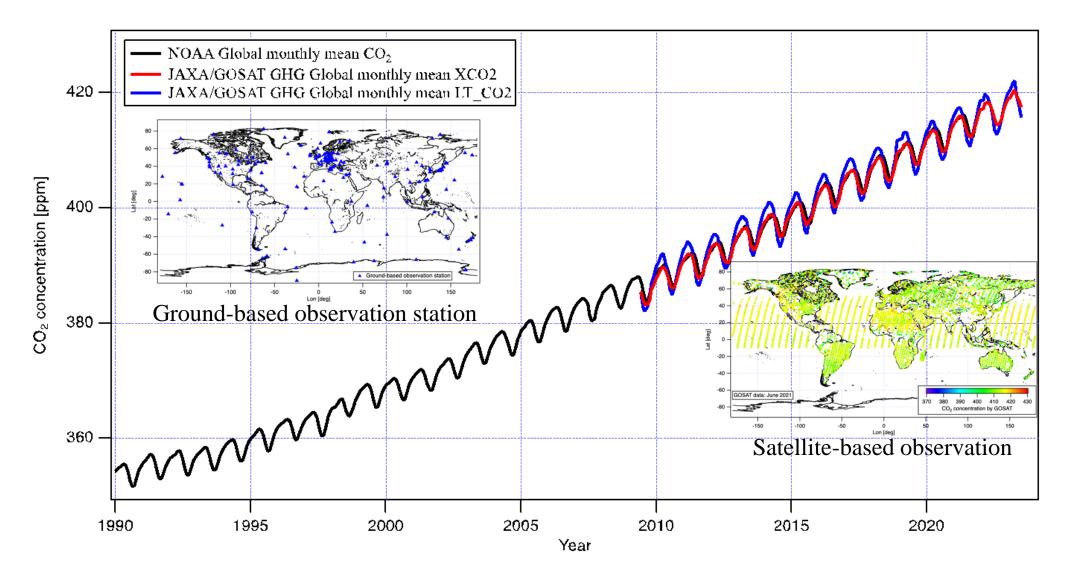
multiple platforms to monitor greenhouse gases and

Public GHG observation cases

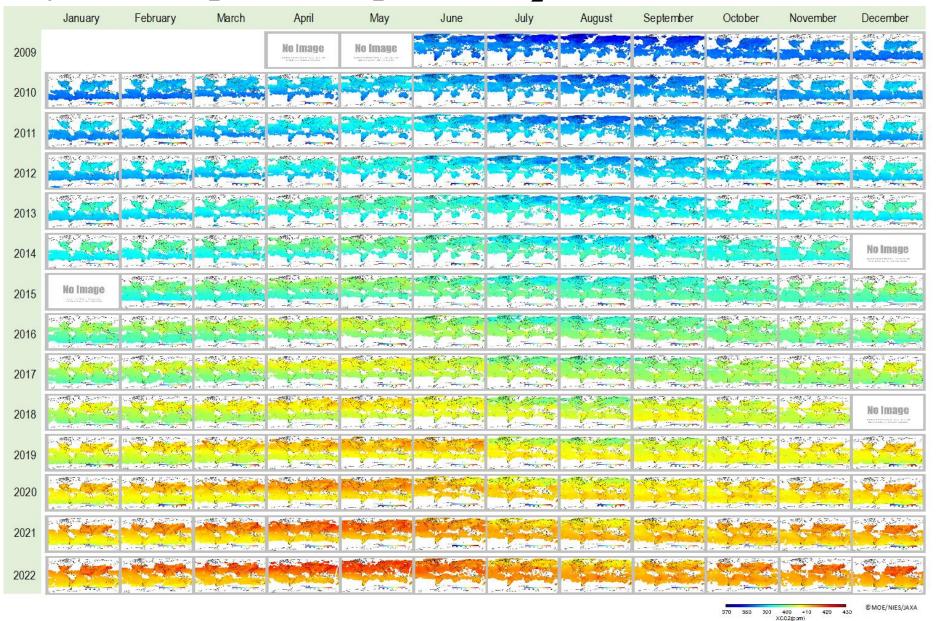
JAXA's GOSAT and GOBLEU cases

#TheEarthTalks

GEO WEEK & Ministerial Summit 2023



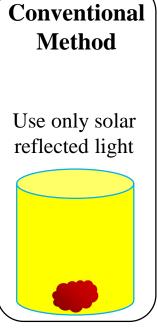
Osamu Ochiai



Contributing to the GHG observation history from space

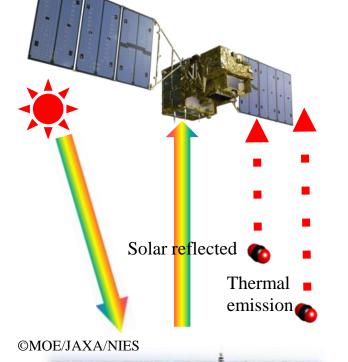
GOSAT data presents 14 years of global CO_2 concentration and its global changes since 2009.

14 years of spatio-temporal CO₂ distribution from GOSAT

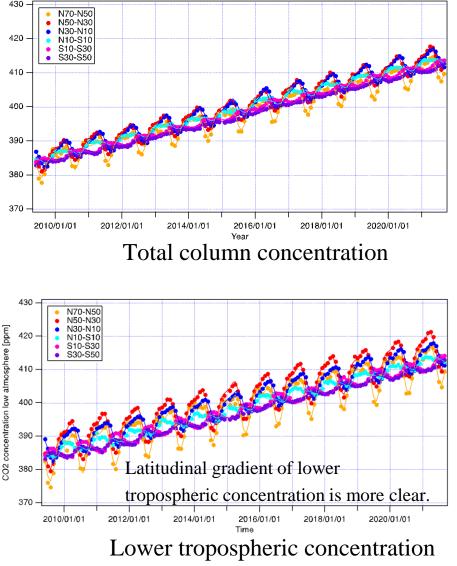

Data is freely available from website: https://data2.gosat.nies.go.jp/ind4ex_en.html

Japan's GHG observatories from space

Project	GOSAT (Kuze et al, AO, 2009)	GOSAT-2 (Suto et al, AMT, 2021,2022)	GOSAT-GW (development)				
Image	Creations Cases Descring Screen	LISTEZE LE RISETZ					
Launch	2009/1/23 (14 years on-orbit)	2018/10/29 (4 years on-orbit)	JFY2024				
Local observation time	13:00	13:00	13:30				
Revisit time	3 days	6 days	3 days				
Observation target	CO ₂ , CH ₄ , SIF(Solar-induced chlorophyll fluorescence)	CO ₂ , CH ₄ , CO SIF(Solar-induced chlorophyll fluorescence)	CO ₂ , CH ₄ , NO ₂ SIF(Solar-induced chlorophyll fluorescence)				
Observation image	Grid	Target Glint	Wide				


JAXA patrial column GHG product

- Use full observation advantage by GOSAT and GOSAT-2 such as simultaneous ShortWave Infrared (SWIR) and Thermal Infrared (TIR) observation as well as 2-orthogonal polarization information.
 - 2 layers in troposphere and 3 layers in stratosphere are applied for CO₂ and CH₄ vertical* concentration. * 6 pressure levels: 0.1 hPa & (0.05, 0.1, 0.2, 0.6, 1)*Psurf



JAXA/EORC new Method Use both solar reflected light & thermal 0.1 hPa 0.05*Psurf 0.1*Psurf 0.2*Psurf=~12km 0.6*Psurf=~4km

CO₂ & CH₄ emission and enhanced density of the lower troposphere

õ

Suto et al, in prep.

Overview of GHG Satellite Missions – GENERIC

Satellite	Agency/Origin	CO ₂	CH ₄	Private	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
GOSAT	JAXA-NIES-MOE/Japan													
OCO-2	NASA/USA													
Sentinel 5 Precursor	ESA-EC Copernicus/Europe													
FengYun-3 series (GAS) CMA-NSMC/China													
GaoFen-5 series	CAS/China													
GOSAT-2	JAXA-NIES-MOE/Japan													
OCO-3	NASA/USA													
GHGSat constellation	GHGSat/Canada			0	22	5								
MethaneSAT	EDF/USA			0										
MicroCarb	CNES/France (& UKSA/UK)													
Feng Yun 3H	CMA-NMSC/China													
Carbon Mapper ¹	CarbonMapper LLC/USA													
GeoCarb	NASA/USA													
MetOp-SG series (S-5)	ESA-EC Copernicus/Europe													
GOSAT-GW	JAXA-NIES-MOE/Japan													
CO2M constellation	ESA-EC Copernicus/Europe								1	2				
1. Carbon Mapperisa public/private	bartnernship between California and Carbon Mapp	er LLC.			Lau	nched &	nomina	I 🥢	Extend	ed or pla	nned	Ph	ased dep	loyment

GHG remote sensing from a passenger aircraft

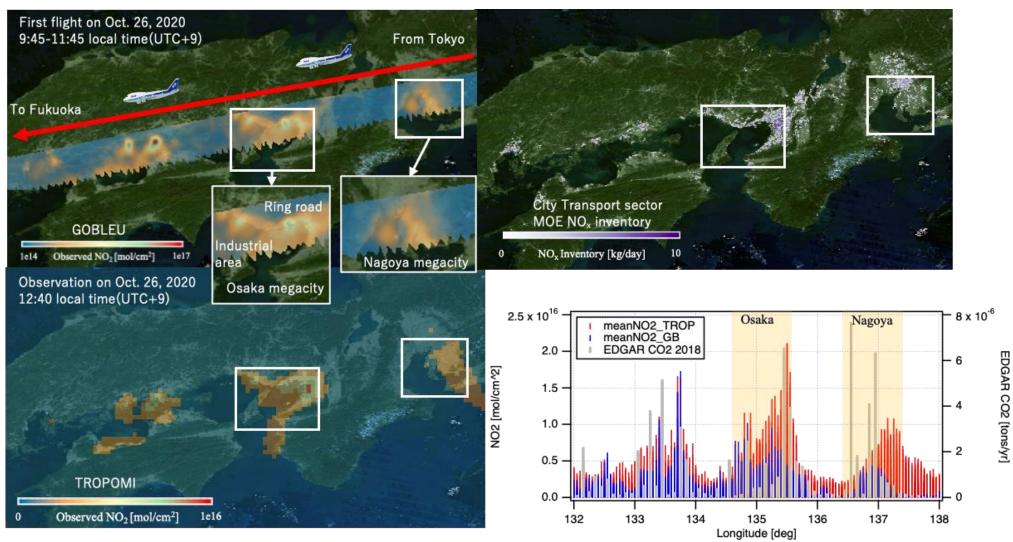
Observation swath:

~50km

Our concepts:

- NO hardware modification to aircraft*
- Compact instruments on cabin seats
- Observing through cabin window
- Small power consumption with mobile battery operation
- 3 modules: 450nm, 740nm and 1.6um bands for NO_2 , SIF and CO_2 with fiber coupling.

Commercial airliners can make repeatable and frequent observations over mega-cites with lower cost than research flights!.


Altitude ~11km For stand alone NO₂ instrument

Observation swath: ~40km

*Limitation of size and wight, the capacity of battery, electronical magnetic conduction from instruments have to be passed the

The first high resolution NO₂ observations from GOBLEU

- High NO₂ were observed over emission hot spots (cities, point sources, and traffic)
- In megacity Nagoya, spatial pattern of NO₂ is different from GOBLEU(GB) and emission inventory. Suto et al., submitted.¹⁰

#TheEarthTalks

GEO WEEK & Ministerial Summit 2023

Jean-Francois Gauthier

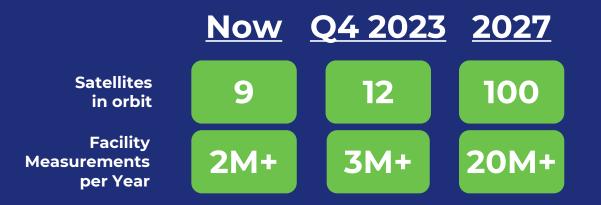
High-Resolution GHG Data

The GHGSat Constellation

ROUTINE MONITORING OF METHANE EMISSIONS AT INDUSTRIAL SITES – FROM SPACE

GHGSat is the only entity in the world (private or public) with satellites designed to monitor emissions from individual industrial facilities anywhere in the world.

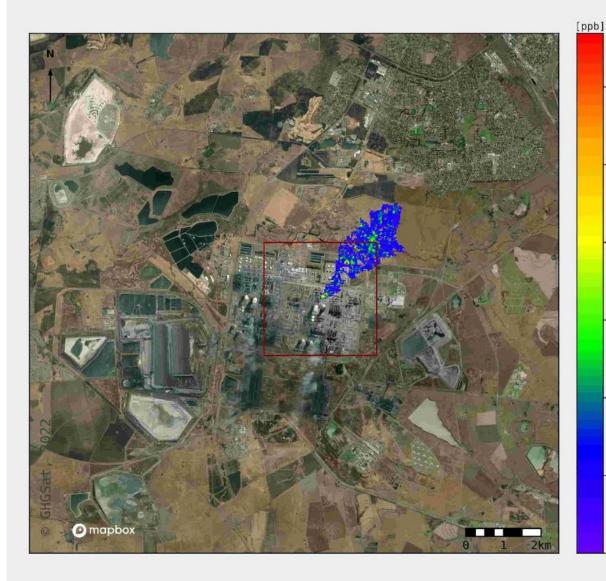
Satellite Data

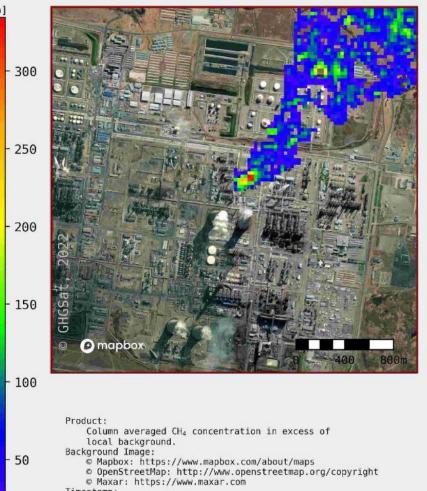

Aircraft Data

Analytics

Data Repository

GHGSAT CONSTELLATION - CAPACITY




Every industrial emitter in the world, measured daily, in near real-time

Timestamp:

2022-02-20 07:11:15 UTC Observation ID: AY1703i

- 50

0

GHGSAT CONSTELLATION – COVERAGE & REVISIT

3M+ facility measurements per year

Up to daily revisits in targeted areas

2023

© 2023 GHGSat Inc

GHGSAT'S MODEL: COLLABORATION

- GHGSat believes that collaboration is the ultimate forcemultiplier when it comes to addressing the emissions challenge head on
- Academic/Scientific Partnerships
 - Harvard
 - SRON
 - Stanford
- Institutional Partnerships
 - European Space Agency (ESA)
 - Canadian Space Agency (CSA)
 - NASA
 - UNEP IMEO
- Industrial Partnerships
 - Glint mode development/demonstration
- Others
 - S&P Global
 - IEA Methane Tracker Report

GHGSAT JOINS ESA'S THIRD PARTY MISSION PROGRAMME

NASA Selects 7 Providers for

Commercial Smallsat Data

Edinburgh, 25 May 2022. – High-resolution greenhouse gas monitoring company GHGSat, has joined ESA's prestigious Third Party Mission Programme, ESA said. The company will share data from its fleet of commercial satellites with Earth science and climate change researchers free of charge.

The 45-year-old programme enables the global scientific community to access high-quality data from Earth observation satellite missions. ESA's Third Party Missions Programme comprises over 60 instruments on more than 50 space missions.

From left to right: Eric Laliberté, Director General Space Utilization at the Canadian Space Agency, Adina Gillespie, Director of Business Development, Europe at GHGSat Inc and Simonetta Cheli, Director of Earth Observation Programmes. Credit: ESA / JürgenMai

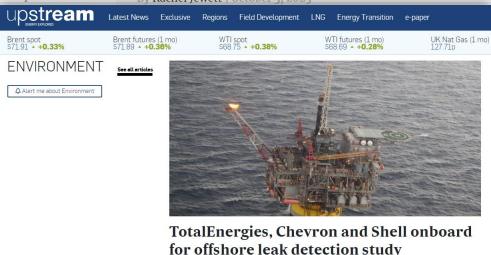
Search

Government/Military Imagery and Sensing

Imagery and Sensing

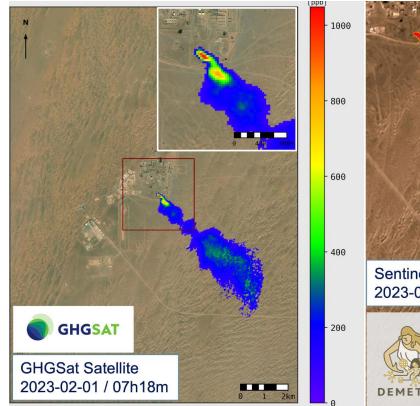
Via Satellite

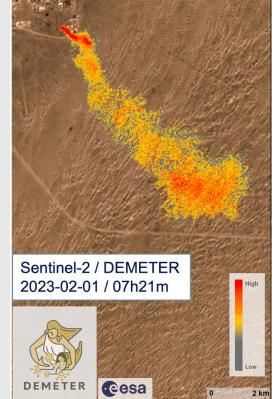
October 18, 2023 Lockheed Martin Invests \$10M in HawkEye 360

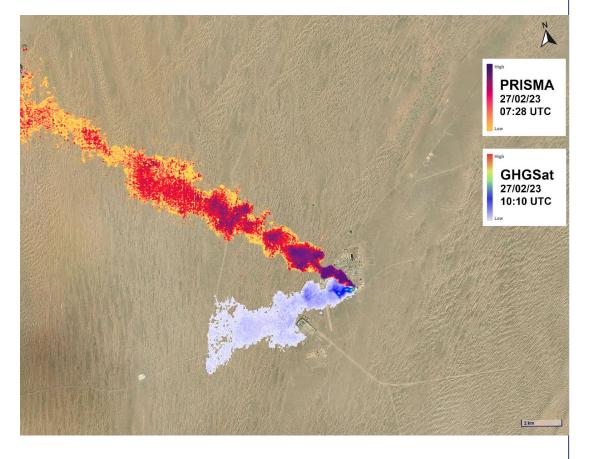

Mobility

October 18, 2023

Viasat Expands IFC Deal


Program


FC Deal By Rachel Jewett | October 3, 2023

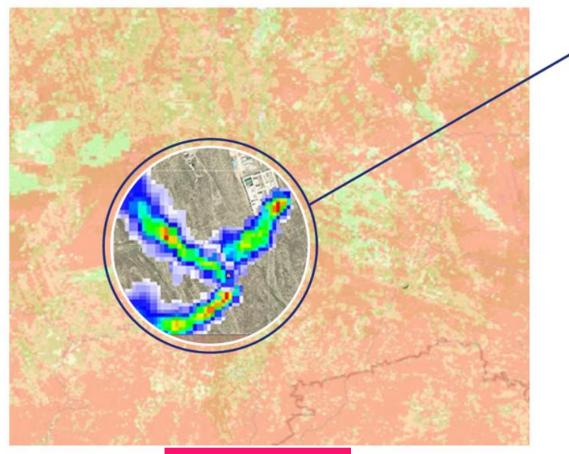


COLLABORATIONS

Validation / Combining Public and Private Data

Aircraft monitoring with DATA.AIR

GHGSat airborne sensors are deployed in every major basin in North America, as well as internationally



023 GHGSat Inc.

- Minimum detection threshold of ~10 kg/hr
- Flight altitude: 10,000 ft above ground level (AGL)
- Spatial resolution (GSD) <1 m (<3 ft), altitude dependent

New free subscription on emissions intelligence platform

GHGSA


Everyone can explore higher temporal resolution of methane concentrations globally with a high-resolution observation gallery of featured emissions around the world.

SPECTRA

You can activate your SPECTRA account today for free here:

#TheEarthTalks

6-10 NOVEMBER

CAPE TOWN, SOUTH AFRICA

