

NOAA has "Big Data"

(Volume, Variety, Velocity, ...)

- Satellites
- Weather radars
- Ocean bathymetry
- Buoy networks
- Tide gauges
- Ships
- Aircraft
- Autonomous vehicles
- Human observers
- Numerical models

These data are unique, valuable, irreplaceable, and collected at public expense

Vision for NOAA Data Management

All NOAA environmental data shall be

Discoverable

Accessible

Usable

Preserved

for all types of users and applications.

NOAA Data Policies

https://nosc.noaa.gov/EDMC/

NOAA Administrative Order 212-15: Management of Environmental Data (2010)

NOAA Environmental Data Management Framework (2012-2013)

Data Management Planning
Directive

(2011; rev. 2015)

Data Access Directive (2015)

Data Citation Directive (2015)

Data Documentation
Directive

(2011; rev. 2016)

Archive Appraisal Procedure (2008)

Data Sharing Directive for NOAA Grantees

(2012; rev. 2016)

NOAA Data Catalog (est. 2013)

NOAA Data Catalog

data.noaa.gov

/ Datasets

Organizations

National Oceanic an... (65734)

▼ Groups

There are no Groups that match this search

▼ Tags

DOC/NOAA/NESDIS/NCE... (46157)

oceanography (24639)

DOC/NOAA/NESDIS/NOD... (24589)

EARTH SCIENCE > OCE... (22120)

EARTH SCIENCE > Oce... (21540)

DOC/NOAA/NESDIS/NGD... (21107)

In Situ Ocean-based... (20448)

CONTINENT > NORTH A... (18149)

EARTH SCIENCE > Oce... (17954)

Hydrographic Survey...

Search datasets.

65,734 datasets found

Collaborators: Chris MacDermaid, NOAA Catalog WG

NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Sensor Data Recor...

Sensor Data Records (SDRs), or Level 1b data, from the Visible Infrared Imaging Radiometer Suite (VIIRS) are the calibrated and geolocated radiance and reflectance data produced...

HTML

Gravity Data for the Vernal, U

The gravity station data (4,778 reco academia) using a variety of metho

HTML

Ekman Upwelling, METOP A

NOAA CoastWatch distributes near Ekman upwelling data. This data be

HTML WCS WMS

Fluorescence, Agua MODIS,

MODIS measures chlorophyll fluore ocean. When phytoplankton are un

HTML WCS WMS

ICOADS 1-degree Standard

(Ken Casey, OneStop team)

5

ERDDAP

Hosts & serves gridded & tabular data

Bob Simons, Roy Mendelssohn (NMFS)

ERDDAP

ERDDAP is a data server that gives you a simple, consistent way to download subsets of gridded and tabular scientific datasets in common file formats and make graphs and maps. This particular ERDDAP installation has oceanographic data (for example, data from satellites and buoys).

Easier Access to Scientific Data

Our focus is on making it easier for you to get scientific data

Different scientific communities have developed different types of data servers

for example, OPeNDAP, WCS, SOS, OBIS, and countless custom web pages with forms. Each is great on its own. Without ERDDAP, it is difficult to get data from different types of servers:

- · Different data servers make you format your data request in
- · Different data servers return data in different formats, usually not the common file format that you want.
- Different datasets use different formats for time data, so the results are hard to compare

ERDDAP unifies the different types of data servers so you have a consistent way to get the data you want, in the format

· ERDDAP acts as a middleman between you and various remote data servers.

Start Using ERDDAP: Search for Interesting **Datasets**

Brought to you by NOAA NMFS SWFSC

- View a List of All 1,338 **Datasets**
- · Do a Full Text Search for **Datasets**
- @ Search
- · Search for Datasets by Category

Datasets can be categorized in different ways by the values of various metadata attributes. Click on an attribute (cdm data type, institution, ioos category, keywords, long name, standard name, variableName) to see a list of categories (values) for that attribute. Then, you can click on a category to see a list of relevant datasets.

· Search for Datasets with Advanced Search @

Global Earth Observation Integrated Data Environment

Unified Access Framework for Environmental Data

Home Access Data Find Data Contribute Data Learn About UAF UAF in Action NOAA EDM Wiki Contact Us

Framework (UAF)

Unified Access

Home **Access Data Find Data Contribute Data** Learn About UAF **UAF** in Action **NOAA EDM Wiki**

What is the Unified Access Framework (UAF)?

UAF is a NOAA-wide effort to make environmental datasets easy to find and use. It is an important contribution to realizing the vision of NOAA's Global Earth Observation - Integrated Data Environment (GEO-IDE) Initiative Type Section - Integrated Data Environment (GEO-IDE) Initiative Type Section - Integrated Data On

UAF follows the design philosophy: Don't solve problems - Copy success.

GHRSST provides high-resolution (<10km) sea surface temperature products to the

oceanographic, meterological, climate and general scientific community.

In its first year it has been exploiting the opportunities for gridded data access and interoperability that have been creative by wide-spread use of a suite of open standards and technologies.

Highlighted Data Set and Data Provider: Group for High-Resolution Sea Surface Temperature (GHRSST) data sets are now Interoperability available as part of the UAF project courtesy of the National Oceanographic Data

Contact Us

What is GEO-IDE?

Learn more about NODC

Center (NODC).

NOAA's Global Earth Observation - Integrated Data Environment (GEO-IDE) is framework for engaging NOAA's environmental data management communities through sharing expertise, experience, and information.

Start exploring GHRSST data

servers

Kevin O'Brien. Eugene Burger (OAR)

Dataset Identifier Project

NOAA DOI Citations in Google Scholar

Data Management is not the goal

We don't want to just "manage" data. We want to use and reuse data, and extract maximum value from it.

Users need answers, not huge datasets

(... or 100s of tiny datasets)

Challenges

$$\frac{\partial n}{\partial t} + \nabla \cdot n \mathbf{V}_{\mathcal{C}} = \mathbf{0}$$

$$\rho \left(\frac{\partial}{\partial t} + \mathbf{V} \cdot \nabla \right) \mathbf{V} = \mathbf{J} \times \mathbf{B} - \nabla p - \nabla \cdot \mathbf{\Pi}$$

$$\begin{split} \mathbf{E} &= -\mathbf{V} \times \mathbf{B} + \frac{1}{en} \frac{\left(1 - Zm_e/m_i\right)}{\left(1 + Zm_e/m_i\right)} \mathbf{J} \times \mathbf{B} + \eta \mathbf{J} \\ &+ \frac{1}{\varepsilon_0 \omega_D^2} \left[\frac{\partial \mathbf{J}}{\partial t} + \nabla \cdot \left(\mathbf{J} \mathbf{V} + \mathbf{V} \mathbf{J}\right) + \sum_{\alpha = i, e} \frac{q_\alpha}{m_\alpha} \left(\nabla p_\alpha + \nabla \cdot \Pi_\alpha\right) \right] \end{split}$$

$$\frac{3}{2} \left(\frac{\partial}{\partial t} + \mathbf{V}_{\alpha} \cdot \nabla \right) p_{\alpha} = -\frac{5}{2} p_{\alpha} \nabla \cdot \mathbf{V}_{\alpha} - \nabla \cdot \mathbf{q}_{\alpha} - \Pi_{\alpha} : \nabla \mathbf{V}_{\alpha} + Q_{\alpha}, \quad \alpha = i, e$$

Data Volume

Data Complexity

Jeff.deLaBeaujardiere@noaa.gov

Traditional Data Services Approach - theory

Traditional Data Services Approach - reality

Notional Cloud Deployment Scenario

NOAA Big Data Project

(R&D)

www.noaa.gov/big-data-project

Wish #1: Full Use of the Cloud

IT security policy mismatch

Wish #2: Composable Functions for Decision Support

Questions?

Jeff de La Beaujardière, PhD

jeff.deLaBeaujardiere@noaa.gov

